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Let X be a compact metric space, and let V = {F(a, x): a E A} where A is an open
subset of Rn

, and F(a, x) and cF/ca" 1:;;; i:;;; n, are continuous on A x X. Suppose
fEC(X) is weakly normal; that is (i) f has a best approximation F(a*, ·)=Bv(f)
such that N = dim W(a*) == dim span{ (cF/ca,)(a*, .): 1:;;; i:;;; n} is maximal, and (ii)
certain weakened versions of the local Haar condition, a sign property equivalent
to a form of asymptotic convexity, and Property Z hold. For those weakly normal
functions f for which {XEX: If(x)-F(a*,xli = Ilf -F(a*, ·)II} has exactly N+ 1
points, we give constructions of the local Lipschitz and strong unicity constants, as
well as show that B v(f) is differentiable. 'I::' 1989 Academic Press, Inc.

1. INTRODUCTION

In the setting of uniform approximation by algebraic polynomials in a
single real variable, characterizations for the strong unicity constant were
developed in [5, 18]. In [10, 1] a characterization for the local Lipschitz
constant was developed and it was shown that under certain conditions the
norm of the derivative of the best approximation operator equals the local
Lipschitz constant. It is the purpose of this paper to extend these results to
a much more general setting, which includes, e.g., as a special case, the
situation of generalized rational approximation on an arbitrary compact
metric space. In this section we describe our setting, which is similar to that
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in [15, 7]; in Section 2 we prove some preliminary results; in Section 3 we
review and expand some results for the linear case; and we prove our main
results in Section 4.

Let n be a positive integer, and let A be an open subset of Rn. For any
a=(al, ...,an)ERn, Iiall will denote max{lail:l~i~n}. Let X be a
compact metric space with a least n + 1 points, and let rex, y} denote
the distance between x, y E X. Given IE C(X), we define ill!! =
sup{if(x)!:XEX}. For any positive integer k and any SeX, Sk will
denote ((XI' ... , x k ): XI' ... , Xk distinct points in S}. Let V be a set of con
tinuous functions defined on A x X, where for all FE V we also assume
(cF/ca;)(a.x)=F;(a,x) is continuous on AxX for i=l, ...,n. For any
GEA, set W(a)={D(a,b,x)=L7~lb;Fi(a,x): b=(b" ... ,bn)ERn} and
let d(a)=dim Weal. Let N=max{d(a):aEA}; evidently N~n. Given
fEC(X) and aEA, let Ea(f)={xEX:lf(x)-F(a,x)l=ilf-F(a,·)li}.
We say F(a*, .) E V is a best approximation to f E C(X) on X from V if
III - F(a*, . )11 ~ Ilf - F(a, . )11, for all a E A. If F(a*, .) is unique, we wiiI
often denote it by B v(f), and we will also use the notation e dfJ =
I - B dfl and Ev(f) = Ea.(f)· The notation Bvif, S) will mean the unique
best approximation to f on S from V, where SeX.

DEFINITION 1. Let f E C(X).

(a) The global Lipschitz constant is defined as

A ·(f) = {IIBv(f)-Bdg)ll:f-J- EC(X)~.
~ sup Ilf _ gil -r- g, g J

(b) For (j >0, let

,- {IIBv(f)-Bv(g)11 f II - CfX)}
Av\f,b)=sup Ilf-gil :0<11 -g ~O,gE " .

Then

is the local Lipschitz constant.

(c l The strong unicity constant is defined as

. - { IIF(a,·)-Bvfflll . A'F . B (f 1
Mv(fl-sup III-F(a"lll-III-Bdflll· aE , (a, )-=1= v' )f'
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(d) Forb> 0, let

Mv(fJ»)

- { IIF(a,·)-Bv(f)ll ·aEA-O<IIF(a ·)-B (f)ll~b}
-sup Ilf- F(a,.)II-lif- Bv(f)r' , v '" .

Then

if v(f) = lim M v(f, b)
1:5 --+0+

is the local strong unicity constant.

We remark here that in case V is a linear subspace it was shown in [11 ]
that M v(f, b) = M v(f) and so the local strong unicity constant only makes
sense when V is a nonlinear set. As stated earlier, it was demonstrated in
[10, 1] that under certain conditions the local Lipschitz constant turns out
to be the norm of the derivative of B v. The following definition makes this
concept of derivative precise.

DEFINITION 2. The best approximation operator B v has at f E C(X) a
one-sided derivative denoted by DrB v: C(X) ---+ V if for each g E C(X) the
limit

1· B v(f + tg) - B v(f) - D B ( )
1m - f v g

t~O+ t

exists. In case Dr B v( g) = - Df B v( - g), we say B v is differentiable at f If
in addition the derivative Dr B v is a linear operator of direction g then B v

is called Gateaux differentiable at f E C(X).

The study of the differentiability of B v in C(X) was begun by Kroo [13 ]
where a characterization of those f E C(X) where B v is Gateaux differen
tiable is given when X is an interval and V is a linear space satisfying the
Haar condition. These results have subsequently been extended to the
setting where X is an interval and V is the set of ordinary rational functions
[12]. In this report, studies of the local Lipschitz constant for the
aforementioned general nonlinear families will lead to an extension of the
differentiability of B v to these families.

We next define three properties which will appear as hypotheses in many
of our results.

DEFINITION 3. Let a E A and SeX.

(a) We say that property SIGN(a, S) holds if for all So c S, So com-
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pact, for all bE A with F(a, x) =f. F(b, x), for all x E So, there exists a
rjJE W(a) with sgnrjJ(x)=sgn(F(b,x)-F(a,x)), for all XESo.

(b) We say property LH(a, S) holds if for every m ~ d(a) and every
set of distinct points {x l' ... , X m} C S, the set of vectors {[hi (xj ), '"

hk(x)]:}= 1, ..., m} is linearly independent, where k=d(a) and {hI' ..., hd
is a basis for W(a).

(c) We say property Z(a, S) holds if there is a .5 > 0 such that fer
aE A with !la - all ~ c5 and for all bE A, if F(b, . ) - F(ii, . ) has more than
d(ii) - 1 zeros in S, then F(b, . ) == F(ii, . ) on X.

We remark here that property SIGN(a, S) is equivalent to asymptotic
convexity essentially as defined in [15 J restricted to subsets of S. Aiso
property SIGN(a, S) is similar to the definition of the "Vorzeichen
bedingung" found in [7, p.68]. Properties LH(a, S) and Z(a, S) are,
respectively, essentially the local Haar condition and property Z as defined
in [3,7, 15J but restricted to S.

DEFINITION 4. Let f E C(X). We say that f is weakly normal if f has a
best approximation F(a*,·) with d(a*)=N such that SIGN(a*, Ea*(fl),
LH(a*, Ea*(f)), and Z(a*, Ea.(f)) all hold.

This weak normality condition is the same as the usual normality condi
tion with the exception that we only require the three properties of Defini
tion 2 to hold on the set of extreme points, Ea.(f). We also point out that
this definition is motivated by the observation made in [15, p. 138J that
the local Haar condition could in some cases be weakened by requiring the
local Haar condition only on the set of extreme points.

Examples of the kinds of settings our results can be applied to are
generalized rational functions, sums of exponential functions with non
coalescing frequencies on compact subsets of the real line, and of course
linear subspaces. Our results also can be applied to certain generalized
rational functions, which are not varisolvent as defined by Rice [16, 17].

2. PRELIMINARY RESULTS

We now state a lemma which collects some resIts on the set V which will
be needed later.

LEMMA 1. Suppose a* E A is fixed with d(a*) = k. Then

(a) If Ila-a*11 is sufficiently small, then F(a,·)-F(a*,·)=
D(a*, a- a* . . ) + o( Iia -a*II).

(b) IIF(a, .)-F(a*, ·)11 =O(lla-a*ll) as Ila-a*11 ~o.

640 58 ~-4
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(c) Suppose k = N. Let x I' ... , XN be distinct points in X such that
LH(a*, {x I' ..., x N}) and Z(a*, {x I' ... , x N}) hold. Let I be a set of N indices
such that {Fi(a*, .): i E I} forms a basis for W(a*). Then for all sufficiently
small c>O, there exists a 8=8(c»0 such that if IF(a*,xJ-c il';::;8,
i = 1, ..., N, then there is a unique a E A satisfying (i) F(a, xJ = Ci> i = 1, ..., N,
(ii) ai = at for i ~ I, and (iii) Iia - a* II ,;::; c. Furthermore, F(a, . ) E V is the
only element of V satisfying (i); that is, if also ii E A and F(ii, xJ = ci,
i = 1, ..., N, then F(ii, x) = F(a, x) for all x E X. We may also assume that
Iia - a*11 = O( IIF(a, .) - F(a*, . )11) as IIF(a, .) - F(a*, . )11 --+ O.

Proof The proof of (a) follows from the fact that Fla, x), i = 1, ..., n,
are continuous on A x X and (b) follows from (a). Part (c) and its proof
can be found in [3].

The first theorem we present contains results on best approximation, in
particular, a "zero in the convex hull" characterization of a best
approximation, an inclusion theorem, and a strong uniqueness result.
However, the main purpose of the theorem is to establish a type of
generalized alternation theorem in our setting.

THEOREM 1. Let a* E A be fixed with d( a*) = k.

(a) Suppose fEC(X) and F(a*")EV are such that SIGN(a*,
Ea*(f)) holds. Then F(a*, .) is a best approximation to f if and only if there
is no ¢J E W(a*) such that (f(x) - F(a*, x)) ¢J(x) > 0 for all x E Ea*(f).

(b) Under the hypotheses of part (a), F( a*, . ) is a best approximation
to f if and only if the zero of k-dimensional real space, Ok lies in
cor sgn(f(x) - F(a*, x) )[hl(x), ..., hk(x)]: x E Ea*(f)}, where co denotes the
convex hull and {h I' ... , hd is any basis for W( a*).

(c) Suppose (Xo, ..., x k) E X k is such that LH(a*, {xo, ... , xd) holds.
Then there is a unique set of signs (Jo, ..., (Jk depending on a* and xo, ..., Xk
such that (Jo=1, l(Jil=1 for i=1, ...,k, and Ok lies in
cO{(Ji[h/(xi), ..., hk(xi)]: i=O, ..., k}, where {hi' ... , hd is any basis for
W(a*). Furthermore, (Jo, ... , (Jk are independent of the choice of basis for
W(a*).

(d) Suppose d(a*)=N, and (xo, ..., XN)EXN is such that LH(a*,
{xo, ..., x N}) holds. Then there is a 8> 0 such that if a E A, (Yo, ..., Y N) E X N
saris/v Iia - a*11 ,;::; 8, and r(xi, Yi)';::; 8, 0,;::; i';::; N, then d(a) = N,
LH(a, {Yo, ..., YN} ) holds, and the signs associated with a* and x o, ..., x N are
identical with those associated with a and Yo, ..., YN'

(e) Suppose (xo,..., Xk) E X k is such that LH(a*, {xo, ..., xd) and
SIGN(a*, {xo, ... ,xd) hold. Then there is no aEAfor which (Ji(F(a,x i)
F(a*,x;))>O, i=O, ...,k, or (Ji(F(a,x;)-F(a*,xi))<O, i=1, ... ,k.
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(f) Suppose (xo, ... , Xk) E Xk is such [hat LH(a*, {xo, ..., x k }) and
SIGN(a*, {xo, ..., xd) hold. Suppose fE C(X), and let (Jo, ..., (Jk be signs as
in part (e). Suppose further that sgn(f(xi) - F(a*, x;}) = (J(Ji, 0 ~ i ~k, for
some (J = -1,0, or 1. Then inf{ IIf - Ha, . )/1: a E A} ~ min {/f(x')
F( a*, x J I : °~ i ~ k }.

(g) Suppose LH(a*, Ea-(f)) and SIGN(a*, E"_(f)) hold. Then
F(a*, .) is a best approximation to f E C(X) if and only iff - F(a*, .) pos
sesses a "(J-alternant" of length k + 1, that is, a (k + 1)-tuple (xo, ... , xd E Xk

with signs (Jo, ... , (Jk as in part (e) such that x, E Eu-(J) and
sgn(f(x;) - F(a*, xJ) = (J(Ji, i = 0, , k, for some (J = - 1, 0, or 1. We shall
denote this (J-alternant by (Jv(xD, , Xk; a*). For the converse part, the
assumptions that LH(a*, Ea-(f)) and SIGN(a*, Ea-(f)) hold can be
replaced by the weaker assumptions that LH(a*, {xo, ..., Xk}) and SIGN(a".
{xo, ... , Xk)) hold.

(h) Suppose d(a*)=N, and fEC(X) is such that f-F(a*,·)
possesses a (J-alternant O"vfxo, ..., xv; a*) of length N + 1 with
LH(a*, {x D, ... , x N }), SIGN(a*, {xo, ..., x N }), and Z(a*, {XD, ... , x N }) ali
holding. Then the best approximation F(a*, .) is strongly unique: that is,
there is a )' > °such that

Ilf - F(a, . )11 ~ Ilf - F(a*, . )11 +)' IIF(a, .) - F(a*, . )11

for all aEA.

Proof The proof of (a) follows as a result of property
SIGN(a*, Ea-(f)) and arguments similar to those in [15, Theorem 87J
and [7, Satz 5.2]. Part (b) results from part (a) and the theorem on linear
inequalities [4, p. 19]. Part (f) is the usual type or inclusion result or a
general de la Vallee Poussin theorem [4, p. 77 J and is well known (see,
e.g., [15, Theorem 85 J; its proof follows immediately from (e). The proof
of (h) follows by arguments similar to those in [3, 9J, where part (e) above
is used in place of the usual zero counting on an interval. We will give
proofs of (c), (d), (e), and (g).

(c) Let {hI' ..., hk } be any basis for W(a*), and consider the
equation

k

L 8iO"i[hd x i)' ..., hk(Xi)] =Ok'
i=O

(2.1 )

This is an underdetermined homogeneous linear system and so it has non
trivial solutions. Now since LH(a*, {XD' ... , x k }) holds every set of vectors
{[h)(z,), ..., hk(zdJ, ..., [hdzk)' ..., hk(Zk)J} is linearly independent, where
Z!, ... , Zk are distinct points in {xo, ... , x k }. Thus for any nontrivial solution
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((Jo(Jo, ..., (Jk(Jd of (2.1) we must (Ji(Ji#O for all i=O, I, ..., k. Now without
loss of generality we may choose (Jo= 1, and rewrite (2.1) as

k

L (Ji((Ji/(Jo)[hl(xJ, ..., hdxJ] = - [hl(xo), ..., hk(xo)]. (2.2)
i~O

The Haar condition then implies that (2.2) has a unique solution
((J I ((J d(Jo), ..., (Tk( (J d(Jo) = (lXI' ••.•, IXk), where IXd 0, i = I, ..., k. Now impos
ing the conditions I(J iI = 1, (J i > 0, for i = 0, ..., k, and L:7=0 (J i = I determines
(JI' ..., (Jk and (Jo, ..., (Jk uniquely. To see that (Jo, ..., (Jk are independent of
the choice of basis for W(a*), we observe for any h in any other basis
for W(a*) we must have L:7=0(Ji(Jih(xi)=0 so (2.1) holds for the
(Jo, ..., (Jk> (Jo, ..., (Jk chosen above.

(d) Without loss of generality we may assume hi = Fla*, '),
i = I, ..., N, forms a basis for W(a*). Let Iii = Fla, '), i = I, ..., N. Now,
li i( Yj) depends continuously on a and Yj' so for J > °sufficiently small we
have that the determinant of the matrix [lilzj)], i= I, ..., N, j= 1, , N, is
nonzero for every choice of N distinct points {z j, .•• , ZN} from {J'o, , YN}'
Thus {Ii I' ..., liN} is linearly independent, so d(a) ~ N; but N is maximal, so
d(a) = N, and {lib , liN} is a basis for W(a). Also, W(a) satisfies the Haar
condition on {Yo, , YN} so LH(a, {J'o, ..., YN}) holds. Finally, by part (c)
we can infer that lXI' ••• , IX N are continuous functions of X o, ..., X N , a*, so
small changes in X o, ..., x N' a* will leave the signs (Jo, ..., (J N associated with
Xo, ... , XN unchanged. Thus if J > °is sufficiently small, (Jo, ... , (J N will also
be the signs associated with Yo, ..., YN'

(e) Suppose (Ji(F(a,xJ-F(a*,xJ»O for i=O, ...,k. (The case
where (Ji(F(a,xi)-F(a*,xi»<O for i=O, ...,k is similar and will be
omitted.) Let {hi' ..., hd be a basis for W(a*). By SIGN(a*, {xo, ..., xd),
there is aCE Rk such that sgn(L:J~ I c/lixi» = sgn(F(a, xJ - F(a*, xJ) for
i = 0, I, ..., k. Thus, setting p = L:;= I cjhj , we have (Ji p(xJ > °for i = 0, ... , k.
We wish to show this is impossible; we will establish the stronger claim
that if (J i pC"tJ ~ 0, for i = 0, ..., k, then p =°on X. From part (c) above and
its proof we have that L:7= I (Ji(Ji [hl(xJ, ..., hk(xJ] = [0, ...,0], for some
(Jo, ...,(Jk with (Ji>O for all i. So L:7~I(Ji(JiP(XJ=0. But (Ji(JiPC""(i)~O,°~ i ~ k, hence p(xi ) = 0, °~ i ~ k, and the claim now follows from the
assumption that W( a*) satisfies the Haar condition on {xo, ..., xd.

(g) (=» Suppose F(a*, .) is a best approximation to ! from V. If
II! - F(a*, . )11 = 0, then Eu.(f) = X and for any (xo, , xd Ei\ with signs
(Jo, ... , Uk we have 1!(xJ - F(a*, xi)1 = °= OU i, i = 0, , k. If II! - F(a*, . )11
> 0, then by part (b) above and Caratheodory's theorem [4, p. 17], for
some m ~ k, there exist (xo, ... , Xk) EXk with I!(xi ) - F(a*, xJI =
IIf-F(a*")II, i=O, ...,m, and the zero of R k is in co{sgn(f(xi)-



STRONG UNICITY CaNSTANTS

F(a*,x;))[h 1(X i ), ...,hk (xJJ: i=O, ...,m} where {h 1 , •••,hd is a basis for
W(a*). But by the Haar condition, m?: k, so m = k. By the uniqueness
of the signs in part (c) we have sgn(f(xo) - F(a*, xo)) sgn(f(x;)
F(a*, Xi)) = (Ji, so sgn(f(xi) - F(a*, x,)) = sgn(f(xo) - F(a*, xo) )(Ji == M i ,

for i = 0, ..., k.

(<=) Suppose that for some (xo, ...,XdEXb LH(a*,{xo,""xk })

and SIGN(a*, {xo, ...,xd) hold, 1/(xi)-F(a*,x;)1 = Ilf-F(a*")II, and
sgn(f(xi) - F(a*, Xi)) = (J(Ji, for i = 0, ..., k, for some (J = -1,0, or 1. Then
by part (f) we have

lif - F(a*, . )11 ?: inf{ II/ - F(a, . )1[: a E A}

?: mint I/(xi) - F(a*, Xi)!: 0 < i < k}

= II/-F(a, ')11,

so F(a*, . ) is a best approximation to / from V.

Remark. We note that if (Jv(xo, ... , XI.:; a*) is a (J-alternant for
/-F(a*,·), and if we define M 1 ={xi:(Ji=1} and M 2 ={x i :(Ji=-1],
then in the terminology of [6, 19J M = M 1 U M 2 is called an H-set relatiye
to F(a*, .), since by Theorem 1(e ), there is no F( a, . ) E V with
F(a*,·)-F(a,·»O on M 1 , and F(a*,·)-F(a,·)<O on M 2 • In fact, in
the terminology of [9J, (Jv(xo, ..., Xk ; a*) is a minimal H-set relative to
F(a*,· J.

As stated before Theorem l(g) is a generalized alternation theorem, but
we note there that the ordinary alternation theorem does not necessarily
hold even in situations where it would appear to make sense. The following
example illustrates this.

EXAMPLE 1. Let X = {-I, O,~}, A = R2
, and V = {at + a2 x 2

:

(a 1 , a2 ) E A}. For every a E A we have Weal = V and deal = 2. Since V is a
linear space we have that property SIGN(a, X) holds for all a E A. Note
also that LH(a, X) and Z(a, X) also hold for all a E A. Thus every f E qX)
is normal. Define /EC(X) by /(-1)=0, !(O)=O, and /W= -l Con
sider a=(-~, 1), so F(a,x)=x2_~. We have then that lif-F(a")!I=j
with / - F(a, .) having the ordinary alternation property, but F(a, . ) is not
a best approximation to f To see this, consider a* = (-~, 0), so
F(a*,x)=-~; we have IIf-F(a*")II=~, with /(-1)-F(a*, -l)=~,

/(O)-F(a*,O)=~, and /m-F(a*,~)=-~. Now we have
(k )( 1)[ 1, ( - 1) 2J+ (~)( 1)[ 1, 0 2

] + (!)( - 1)[ 1, (!) 2 ] = [0, OJ, so ((J 0' (J t, cr 2 )

= (L L - 1), and so / - F(a, .) alternates in the sense described in
Theorem l(g); thus F(a*, .) is the best approximation to f Note that if we
extend this example to [-1,1] by defining f to pass through (-1,0),
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(-!, -~), (0,0), (!, -~), and (1, -~), and to be linear between these
points, then I is weakly normal (but not normal), and F( a*, x) = - ~ is still
the best approximation to I according to Theorem l(h) with the same
a-alternant. Thus although the concepts of weak normality and a-alternant
are the same as ordinary normality and alternant in some common situa
tions (e.g., ordinary rationals or exponential sum approximation on a com
pact subset of an interval with at least N + 1 points), in more complicated
situations they can add additional insight.

The next example demonstrates that in contrast to the set of normal
functions the set of weakly normal functions need not be an open set. It
also gives an example of a nonweakly normal function that has a strongly
unique best approximation.

EXAMPLE 2. Let X = [ - 1, 1], A = R2
, and V = {a 1 + a 2 x 2

: (a l' a2 ) E A }.
Then as before W( a) = V and d(a) = 2, for all a E A, but since properties
LH(a, X) and Z(a, X) both fail, there are no normal functions in C(X) with
respect to V. Now define IE C(X) by I( -1) = 1, I( -!) = -1, 1(0) = 1,
l(l) =0, and linear in between these points. Then a* = (0, 0) gives
F(a*, x) =°as the best approximation with {- L -!, o} with the signs
a0 = 1, 0" 1 = - 1, 0"2= 1 forming a O"-alternant. Note also that properties
SIGN, LH, and Z all hold at a* on { -1, -!, O}, so I is weakly normal
imd by Theorem l(h), F(a*, ·)=0 is strongly unique. Now for 0<t<1
define gtEC(X) by gt(-I)=I, g,(-!)= -1, gt(-i)=I, gt(O)=I-t,
gt(t) = 1, gt( 1) = 0, and linear in between these points. Then a* = (0, 0) still
gives the best approximation to gt and {-I, -!, -t} with signs 0"0=1,

O"l = -1, and 0"2 = 1 forms a a-alternant, but properties LH and Z fail to
hold at a* on the set Ea.(gtl={-I, -~, -t,t}. So gt is not weakly
normal even though g, -+ I uniformly as t -+ O. However, we do have that
for t sufficiently small

II gt- F(a,' )11 ~ II gt II + «1-4t2 )/(7 -4t2 ))11 F(a,' )11 for all a E A.

Hence g, has zero as its strongly unique best approximation.

The preceding example illustrates an important fact about the weakly
normal functions. That is, if I is weakly normal and g is sufficiently close
to 1, then g must have a strongly unique best approximation, even if g is
not weakly normal. This is made precise in the following lemma.

LEMMA 2. Suppose IE C(X) is weakly normal and IlevU)11 #0. Then
there exists a Do> 0 such that if g E C(X) and III - gil ~ Do, then g has a
strongly unique best approximation F( a, '), and g - F( a, .) possesses a
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(i-altemant of length N + 1. In addition, A~(f, ( 0 ) < + ::1:). Moreol'er, this
strong uniqueness holds uniformly in that there exist a 6,0 < 6::;; 00 , and a

l' > 0 such [hat II g - F(a, . )11 ? II g - B v( g)il + " !IF(a, .) - B 1'( g)11 for ali g
H'ith lif - gil::;;6 andfor all aEA.

Proof If F(a*, .) is a best approximation to f, then LH(a*, E".(.(I)
and SIGN(a*, Ea.(f» hold, so by Theorem leg) f - F(a*, .) possesses a
(i-altemant (idxo, ...,x,v:a*), and by Theoreml(h), F(a*,·) is strongly
unique. Then by arguments similar to those in [3J, there exist 6[ > 0 and
f3 > 0 such that if g E C(X) and Ilf - gil::;; <5 j, then a best approximation
F(a, .) to g exists, and for any such F(a, .) we have IIF(o*, .) - F(a, . )11 ::;;
fJ Ilf - gil. We now claim that for some be with 0 < 00 ::;; 6 1 , if lif - gil::;; 15 0

and F(a,·) is a best approximation to g, then g-F(a,·) possesses a
(i-altemant of length N + 1. Once this has been shown, strong uniqueness
of F( a, . ) will follow from Theorem 1(h), and we will also have Av(f. be) ::;;

f3 < + x.
To prove the claim, suppose that there were a sequence {g",} c C(X)

with II gm - fll -40, and {a"'} c A with F(a"',·) a best approximation
to gn" such that gm- F(a"', .) possesses no IT-altemant of length N + L
Note that IIF(a"',·) - F(a*, . )11::;; fJ Ilf - gm il for In sufficiently large.
so IIF(a"',·) - F(a*, . )!I -4 O. Thus by Lemma l(c) we can assume
II am - a*!1 -4 O. Without loss of generality, suppose i hI' ..., hN } =:=

{F i(a*, . ), ... , F:A a*, . )} is a basis for W( a*). Then by arguments in the
proof of Theorem 1(d), for 111 suffciently large we have d(a"') = Nand
{h1n" ...,h;v",}=:={F,(am,.), ... ,Fry(am,.)} is a basis for W(am). Nowi:>y
Theorem 1(b) and Carathedory's theorem [4, p. 17], for each in there is a
number k ::;; N (which by going to subsequences if necessary, we can assume
to be fixed), numbers 8mo , ...,8mk with 8m,>0, O::;;i::;;k and 2:7=08",;=:'
and points .r",o, ... , )'mk E E,,( g",) with

k

I 8m; sgn( gm{Y",;) - F(a"', Ym,))[h'mCl'm;), ..., h Vm( /,,")J = Ok-
i=O

Going to subsequences if necessary, we can assume J'mi --4 ), EX,
O::;;i::;;k, fi"'i-48 i ?O, O::;;i::;;k, with L;~Oei= 1, and sgn(gm(Ym;j
F(a"', J"",)-4Bi for O::;;i::;;k; since Ilgm-F(am, ·)II-4llf-F(a*,·)I: #0 we
have 10',1 = I for O::;;i::;;k. We also have

k

I 8i Bi [h j ( y;), ..., hsl Yi)] =Ok
i=O

and {Yo, ... , Yk] cE".(f) since for O::;;i::;;k we have

(2.3 ;
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I/( yJ - F(a*, yJI

> Igm(Ymi) - F(am, YmJI-I/(Yi) - I( YmJI-I/(YmJ - gm(YmJI

-[F(am, YmJ - F(a*, YmJI-[F(a*, YmJ - F(a*, Yi)1

> II gm - F(am, . )11-I/(yJ - I(YmJI-III - gmll

-IIF(am, .) - F(a*, .)11-IF(a*, YmJ - F(a*, yJI

-t III- F(a*, . )11

asm -t + 00. Now if Yi= yjforsome i =1= j, then Yi = Yj = xforsomex E Ea· (f).
Thus iii = limm~oo sgn(gm(Ymi) - F(am, YIi)) = sgn(f(x) - F(a*, x)) =
limm~x sgn(gm(Ymj) - F(am, Ym)) = iij . So 8iiii [h l(yJ, ..., hN(Yi)] +
8j iij [h l (y), ... , hN( yJ] = C8t +8j) iii [h l( yJ, ..., hN(yJ], and 8 i + 8j > 0 if
either 8;>0 or 8j >0. Now coalescing terms in (2.3) as above and deleting
any zero terms, we have that a nonempty set of vectors of the form
[hl(Xi), ..., hN(xJ] is linearly dependent, where the x/s are distinct element
of Ea· (f). But our weak normality assumption implies W(a*) satisfies the
Haar condition on Ea· (f); thus there must be at least N + I of these
vectors. Thus we must have k = N, 8; > 0, 0~ i ~ N, and Yi =1= Yj for 0~ i,
j ~ N, i =1= j. By Theorem 1(c), (T v( Yo, ..., Y N; a*) exists with associated signs
(To, ..., (TN and by Theorem led), for m sufficiently large (TV(Ymo, ..., YmN; am)
exists and has signs (To, ..., (TN' Also we have ONEco{sgn(gm(YmJ
F(am, YmJ)[hlm(YmJ, ..., hNm(Ymi)]: i= 0, ..., N}. Thus, for m sufficiently
large, the uniqueness in Theorem l(c) gives sgn(gm(YmJ-F(am, YmJ)=
(Tm(Ti for 0 ~ i ~ N, where (Tm = sgn(gm(Ymo)-F(am, YmO))' Thus
(TV(YmO, ...,YmN;am) is a (T-alternant for gm-F(am,.), and this is a con
tradiction. Thus, the claim is established.

To prove the strong unicity part we assume that F(a, . ) == B v( g).
Suppose the result is false. Then there is a sequence {gm} C C( X) with
Ilgm-111-t0, Bv(gm)=F(am, .), and there is a sequence {bm} cA with

as m -t + 00.

Since Ym -t 0 we must have that {1[F(bm,. )II} is bounded and II gm
F(bm, . )11 -II gm - F(atn, . )11 -t O. Now II gtn - F(am, ')11 -t III- F(a*, . )11, so
II gtn - F(btn, ·)11 -t III - F(a*, . )11. So, using Lemma l(c) and the arguments
in [3, Theorem2] we can assume Ilatn-a*II-tO and Ilbm-a*II-tO.
We can also assume by using the arguments in Theorem l(d) that
{F1(a*,.), ..., FN(a*,.)} is a basis for W(a*), {FI(am,.), ..., FN(am,.)} is a
basis for W(am), and {FI(bm,.), ... , FN(b tn, .)} is a basis for W(bm); also
aj = bj = af for j> N. Now by the first part, we have that for all m
sufficiently large there is a (T-altemant (T v(xmO ' ..., x llN ; am) for hm- F(am, .);
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going to subsequences if necessary, we can assume Xmi ---+ Xi EX, 0 ~ i ~ N,
and from arguments of the first part of this proof, it follows that
{xo, ..., xv} will be the points of a O"-alternant for f - F(a*, .). By
Theorem l(d), for m sufficiently large we can assume that (Jv(x mO , .•• ,

XmN ; am) and O"vCyo, ..., x N; a*) have the same signs (To, ..., O"N' Further let
0" be such that sgn(f(xJ-F(a*,xJ)=O"O"i' for O~i~N. Then for m
sufficiently large we have sgn( gm(xmJ - F(am, x mi )) = O"O"i for 0 ~ i ~ N. We
now claim that there is an rx > 0 such that for all m sufficiently large,

To prove the claim, suppose that, going to subsequences if necessary which
we do not relabel, there were positive numbers rx m ---+ 0 with

for all large m. Now for m sufficiently large, the mean value theorem
implies that F(a"', x mi ) - F(bm, x mi )= D(a*, am, Xi) + o( Ilam

- bm II). Thus
we have that

Going to subsequences if necessary, we can assume (aj' - bj)/( Ilam
- bin ii )

---+ c). 0 ~} ~ N, where max {Ie) I: 0 ~} ~ N} = 1. Thus defining c) = 0 for
}>N we have max{O"O"iD(a*, c, xJ O~i~N} ~O. But by the claim in the
proof of Theorem l(e), we have D(a*, c, .) = 0, which is a contradiction.
Thus the claim is established. Again, going to subsequences of necessary,
we now have for m sufficiently large and for some i with 0 ~ i ~ N,

+ .F(a"',x",J-F(bm,x",J ilaln-b"'ll
0"0", Ila'" _ b'" II '

~ Ilg",-F(a"', ·)I! +rx ila"'-b"'il·

So using Lemma 1(b), there is a constant L > 0 such that

II g", - F(b"', . )11 ~ II g", - F(a"', . )11 + rxL IIF(bm, .) - F(a"', . )11·

Thus Ym ~ rxL, which contradicts the fact that Y", ---+ O.
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3. LINEAR THEORY

We now consider the situation where V is a linear subspace. We take
A=RN,h1 ,h2 , ... ,hNEC(X) to be linearly independent and set V*=
{F(a, ·)=aJl 1 + ... +aNh N}. We have that for all aER N and all SeX,
d(a) = N, W(a) = V*, and SIGN(a, S) holds; further LH(a, S) and Z(a, S),
when they hold, are independent of a, and are equivalent if lSI ~ N. Thus
f E C(X) will be weakly normal if and only if it has a best approximation
p* E JI'* with V* satisfying the Haar condition on E v.(f). If V* does
satisfy the Haar condition on (x0' ... , X N ) E XN , then 0' v'(X o, ..., X N; a) exists
and is independent of a, and will be denoted by 0' v.(xo, ..., x N ).

Given X v* = (xo, ..., x N ) E XN with V* satisfying the Haar condition on
{xo, ..., XN} and O'v*C\'o, ..., XN) having signs 0'o, ..., O'N' we define the
generalized polynomials q i E V* by

j"# i, j = 0, .... N, i = 0, ..., N. (3.1 )

The proofs of the following two lemmas are similar to the proofs given in
[1, Lemma 1] and so will be omitted.

LEMMA 3. Suppose f E C( X) and X V* = (xo, ..., X N) E XN with V* satisfj'
ing the Haar condition on {xo, ...,xN}. Let O'v*(xo, ...,xN ) have signs
0'o, ..., O'N and define qJor i=O, ..., N as in (3.1). Then

(ii) ifp E V*,

LEMMA 4. Suppose V* satisfies the Haar condition on X v* = {xo, ..., x N },

where (xo, ... , x N ) E XN . Then the generalized polynomials qi defined by (3.1)
satisfr

The next theorem gives an explicit form for the local Lipschitz constant,
1v*(f), and as a consequence, shows that B V* is Gateaux differentiable at
f, for all f E C(X) that are weakly normal, and such that IEv.(f)1 = N + 1.
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THEOREM 2. Suppose f E C(X) is weakly normal. lie v.(f)I! # 0 and
IEv.(f)! = N" + 1. Let Ev.(n = {xa, ..., .'cv]. Then

Prool The proof that Av.(f) "S qlv.(X, Ev.(f)) is similar to that in [I,
Theorem 2] and will be omitted, except to note that Markoffs inequality
in that proof is replaced by the following fact: There is a function
Ijt:R+-+R+ with Ijt(b)-+O as 15-+0+ with w(p,b)"Sllpllljt(b), for all
p E V*, where w( p, b) is the modulus of continuity of p. To see this we
note S = {q E V*: Ilqll = I} is compact, and is thus equicontinuous by the
Arzela-Ascoli theorem; thus ljt(b)=sup{lq(xt!-q(x")!: qES, Xl' ","EX,
Ix1-x:I"SJ}-+O as 15-+0+. Now for any PEV*, p~O, we have
w(p/lipll,b)"SIjt(b), so w(p,b)"Sllpllljt(b). The proof that Xv.(f)?:
c[J v.(X, E J.(f)) can be accomplished by selecting g E C(X) with II g II ~ 0
and proving, using the inequalities developed in the first part of the proof
with g=f+tg, that lim,~a(Bv*(f+tg)-Bv.(f))itexists and equals
I'~~o (-O"jg(x)!(l + Iq)x,)1 ))qj; this can then be used to show that

for ail gEC(X) with Ilgll #0, and this implies J.v.(f)?:c[Jv*(X, Er.(f))

The proof of Theorem 2 gives us then the following which is merely a
generalization of [13].

COROLLARY. Suppose f E C(X) is weakly normal, lie 1·.(f)11 # 0, and
IEJ·.(fll =N + 1. Let Ev.(f)= {xa, ..., x.v}. Then B v* is Giiteaw( d(fferen
tiable at f for all g E C( X). Moreover,

N -O"jg(.-x)
DrBv.(gl= L 1+ 1(11 qj'

J~a qj x/

Remark. The number c[J 1'.( X, E v.(n) depends not explicitly on f but
only on the set of extreme points of f - B v.(f). Thus if we change f but
maintain the same set of extreme points the number qlv'(X, Ev*(f)) will be
the same.

The final theorem of this section gives a characterization of the
strong unicity constant for f E C(X) when f is weakly normal and
IEv.(f)1 = IV + 1. We omit the proof since it follows from the arguments of
[5, Theorem 5] and the fact that IEv.(f)1 =N+ l. (See also [11].)
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THEOREM 3. Suppose fEC(X) is weakly normal, Ilev.(f)11 #0, and

IEv.(f)1 = N + 1. Let E v.(f) = {xo, ..., XN}' Then

lim M v.(f, b) = M v.(f) = max{ Ilqill : 0::::;; i::::;; N}.
6-0+

4. MAIN RESULTS

We are now in a posItIon to prove our main results which extend
Theorem 2, its corollary, and Theorem 3 to the nonlinear setting; the
results turn out to be the same as in the linear case, with V* = W( a*).

THEOREM 4. Suppose f E C(X) is weakly normal with best approximation
F(a*, ')E V, Ilev(f)ll #0, and IEv(f)1 =N+ 1. Let Ev(f) = {xo, ...,xN}
and V* = W(a*). Then

~ v(f) = lim Av(f, b) = cP v.(X, E v(f))
6-0

= II £ Iqjl II
j~O 1+ Iqj(xj)1 '

where q;, j = 0, ..., N, are the generalized polynomials in W(a*) satisfying
(3.1 ).

Proof Let 15o be as in Lemma 2, and let f3 = Av(f, 15o) < 00. Now sup
pose 0<15::::;; 15o; for 15 sufficiently small and °< Ilf - gil::::;; 15 we have from
Lemma 2 that g has a strongly unique best approximation F(a, '), with
g-F(a,') having a O'-alternant O'v(Yo, ..., YN; a). Now using arguments
like those in the proof of the first part of Lemma 2 or by a generalization
of [1, Lemma 4] we can assume that max{r(xi , y;): O::::;;i::::;;N} is as small
as we please. We have IIF(a, .) - F(a*, . )11::::;; f3 Ilf - gil so by Lemma l(c)
we can assume that Ila-a*II=O(IIF(a,·)-F(a*,·)II)=O(llf-gll). By
our definitions and Theorem l(d) we can assume that O'v(xo, ..., X N; a*),

O'v(Yo, ..., YN; a), O'v.{--ro, ..., x N), and O'v'(Yo, ..., YN) all have the same
signs 0'0' ... , O'N' Now from Lemma l(a) we have

IIF(a, .) - F(a*, .) - D(a*, a - a*,' )11 = o( Iia - a*ll) = o(llf - gil). (4.1)

Let J=f-F(a*,·) and g=g-F(a*,·); we now claim that IIBv.(g)
B v.(J) - D(a*, a - a*,' )11 = o( Ilf - gil). Once this has been shown, apply
ing (4.1) we will have

IIF(a, .) - F(a*, . )11 - liB v'( g) - B v.(J)11

::::;; IIF(a, .) - F(a*, .) - (B v.(g) - B v.(Jm

::::;; IIF(a, .) - F(a*, .) - D(a*, a - a*,· )11

+ IIBv·(g) - Bv·(J) - D(a*, a -a*,- )11 = o(llf - gil).
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Now Ilf - gil = II! - gil and we have

IIF(a, .) - F(a*, . )11 ~ liB v.(f) - B v·L~)11 . ('If- _ -'1"1
Ilf - gil "" II!_ gil + /1 I g"
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where rl(t) ...... O as [ ...... 0+. Thus we have for 15>0 sufficiently small, since
for any g with 0 < Ilf - gil ~ b there is a g with 0 < II! - gil ~ 6,

su {IIF(a,.)-F(a*")II:O<llf_ II~b}
p III-gil g ""

~ P {IIBv.(g) - Bv·(f)11 + '1If- - -II \. 0 < 11/- - -II ~ c5t
""su III-gil r l \ g J. g "" r

So ), vCr. 0) ~ Ap(], (5) + sup{rl( II! - gil): 0 < III - gil ~ c5}. Therefore,
limb ~ 0 ..1. v(f, (5) ~ limb ~ 0 Av'(f, b). Similar arguments prove the reverse
inequality, and so we have limb ~ 0 ). v(f, 0) = limb ~ 0 Avo (]' b). But by
Theorem 1(g) we have B v.(f) = 0 and E v.(f) = E v(f), so Theorem 2
implies that limb ~ 0 Av.(], (5) = ct> v.(X, E v(f)) = limb ~ (l ;. v(f, b) = ): vUt
There remains only to prove the claim. First note that (4.1) implies

H- D(a*, a - a*,· )11 ~ II g- F(a, . )11 + o( I[! - gil). (4.2)

Now for i=O, ..., N,

Ig(y;)-D(a*, a-a*, yJI

;;:: Ig(yJ - F(a, yJI -IIF(a, . l - F(a*, -) - D(a"', a - a*,' )11

;;::llg-F(a,·)II-o(ll/-glll· (4.3}

Since sgn(g(y;l-D(a*, a-a*, y;l)=sgn(g(yJ-F(a, yJ)=(J(J; for some
(J=±l,O~i~N, and D(a*,a-a*")EV*, we have form (4.3) and
Theorem l(f)

II g- Bv.(g)11 ;;:: II g - F(a, . )11 - o( III - gil). (4.4)

Now applying the strong unicity part of Lemma 2 to V* there is a }' > 0
such that

IIB v .( g) - D(a*, a - a*,· )11 ~ (l/},)[II g-D(a*, a- a*,· lil-II g- B v'( g)iIJ.

Then (4.2) and (4.4) imply

liB v.( g) - D(a*, a - a*. -)11

~ (l/y)[11 g- F(a, . )11 + 0(111 - gil) - (II g- F(a, . lll- 0(11/- gl!))]

= o( II! - gil),
which establishes the claim and the theorem.
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The following corollary generalizes a result of [12] where it is shown
that in the case of ordinary rational function approximation on a closed
interval where f is normal with IEv(f)1 =N+ 1, the B v is Gateaux
differentiable at f (See also [2].)

COROLLARY. Suppose that f E C(X) is weakly normal with best
approximation F(a*,·)E V, llev(f)ll #0, and IEv(f)1 =N+ 1. Let Ev(f) =
{xo, ..., x N }, V* = W(a*), and O"v(xo, ..., X N; a*) have signs 0"0' .•• , O"N. Then
B v is Gateaux differentiable at f for all g E C(X). Moreover,

B _ N -O"jg(Xj )
Df v(g) -2: 1+ I .()I qj' (4.5)

J~O qJ xJ

where qj' 0 ~ j ~ N, are the generalized polynomials in W( a*) satisfying
(3.1). Thus IIDfBvl1 = <Pv·(X, Ev(f)).

Proof Let g E C( X). If g == 0 then (4.5) holds, so assume g i= O. For
any nonzero t, let gt = f + tg, f = f - F(a*, .), and gt = gt - F(a*, .). In the
proof of Theorem 4, it was shown that (with gt replacing g)

IIBv(gt)-Bv(f)-(Bv·(gt)-Bv.(j))ll =o(llf - gtll)·

This then implies

II B v(f + tgj - B v(f) B v·(j + tgj - B v·(j) II = o(t I~ gil)

which approaches zero as t --+ O. As in Theorem 4 we have E v.(j) = E v(f),
but by the corollary to Theorem 2, we have

1
. Bv·(j+ tg) - Bv·(j) ;. -O"jg(x;l
~ =L q

hO t j~O 1+ Iq;(x;l I J'

so (4.5) follows.

The final theorem was proved in [11] for the situation of ordinary
rational function approximation on a closed interval with normality in
place of weak normality. We note also that a similar theorem has been
shown to hold under somewhat different assumptions [8].

THEOREM 5. Suppose f E C(X) is weakly normal with best approximation
F(a*, . ) E V, lie v(f)ll # 0, and IE v(f)1 = N + 1. Let E v(f) = {xo, ..., X N},
and V* = W(a*). Then

lim M v(f, b) = M(f) = max{ Ilqill: 0::( i::( N},
b~O

where qi' 0 ~ i::( N, are the generalized polynomials in W( a*) satisfying
(3.1 ).
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Proof For 15 > 0, consider F(a, .) E V with 0 < IIF(a, .) - F(a*, . )11,::; b.
Then from Lemma 1(d), for 15 > ° sufficiently small we can assume
Iia - a* II = D( IIF(a, .) - F(a*, . )11)· Let J = I - F(a*, .); as in the proof of
Theorem 4, we have Bv.(f)=O and Ev.(j) = Ev(f). Now by Lemma Haj
F(a,·) - F(a*,.) = D(a*,a-a*,·) + o(lla-a*ll) = D(a*,a-a*,·) +
o(llF(a,·)-F(a*,·)II), so for 15>0 sufficiently small we have
D(a*,a-a*,·) =1=0, so IIJ-D(a*,a-a*,·)li-IIIII>O. We now claim
that for 15 >°sufficiently small

I
IIF(a,·)-F(a*,·)11 _ IID(a*,a-a*,·)-Bv.(f)11 I

Iii -F(a,· )Ii -Iii -F(a*,· )11 il! -D(a*, a-a*,· )11 -Ii! -BJ,.(f)I\!

~ u(b),

where u(b)~O as b~O+. To see this, let t/!1(a) = IIF(a, ·)-Fia*, ·)I!
D(a*, a - a*,· )11; then It/! 1(a)1 ~ IIF(a, . ) - F(a*, . ) - D(a*, a - a*,· )11 =

o( IIF(a, .) - F(a*, . )11). So sup{ It/! l(a)l/llF(a, .) - F(a*, . )11: 0 < liF(a, .)
F(a*")II'::;b}~O b~O+. Likewise, let t/!2(a)='U-F(a")II-
!I! - F(a*, . )11 - (IIJ - D(a*, a - a*,· )II-IIIII); then 1t/!2(a)I'::; IIF(a*, .)
F(a, .) + D(a*, a - a*,· )11 = o( IIF(a, .) - F(a*, . )11). So sup{ IljJ2(a)l/iIF{a, .)
- F(a*, . )!I : 0 < IIF(a, .) - F(a*, . )11'::; b} ~ 0 as b ~ 0+. We have then that

I
IIF(a,·)-F(a*,·)11 IID(a*,a-a*,·)-Bv·(f)11 I

Ii! - F(a, . )I\-\I! - F(a*, . )\\ - \II - D(a*, a - a*,· )\\ -ill - B v.(f)111

I IID(a*,a-a*")II+ljJl(a) liD(a*,a-a*")11 I
= Ilif - D(a*, a - a*,' )11- lIill + ljJ2(a) -Ill - D(a*, a - a*,· )11 - IlfIIl

I

ljJ l(a)( III - D(a*, a - a*,· )11 - IIJII) -ljJ2(a) D(a*, a - a*,· )11 I

= (II! - F(a, . )11 -II! - F(a*, . )11)( IIJ - D(a*, a - a*',· )11 - II!II)

ilF(a, ·)-F(a*, ·)11

II! - F(a, . )11 - II! - F(a*, . )11

'1(,1, ( ,I, ( liD(a*, a-a*,· )11 )\ !(IIF( ) F( *'1')
X '1'1 a)-'I'2a) IIJ-D(a*,a-a*")II-llfll ! ' a,' - a ,'J:I .

(4.6)

Now by the strong uniqueness of F(a*, .), there is a rl > 0 such that
II! - F(a, . )11 -Ii! - F(a*, . )11 ~ I'lllF(a, .) - F{a*, . )11, and by the strong
uniqueness of B v.(1), there is a 1'2>0 such that IIJ-D(a*,a-a*")!I
II/II ~ h IID{a*, a - a*,· )11. So we have from (4.6),

I
IIFta,·)-F(a*,·)I\ IID(a*,a-a*,·)-Bv·(I)11 I

I II! - F(a, . )11 -II! - F(a*, . )11 II! - D(a*, a - a*,· )11 -III - B 1'.(1)111

~ O/}, 1 )[lljJ 1(a lI/IIF(a, . ) - F{a*, . ) II + ljJ 2(a )1/( i'2 il F{a, . ) - F(a*, . ) I! )],
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so setting
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u(6) = SUp{ (l/Yd[Il/JJ(a)I/IIF(a, .)

-F(a*, ·)11 + 1l/J2(a)I/(}'21IF(a, ·)-F(a*, ·)11)]:

0< IIF(a,' )-F(a*,· )11 ~6},
the claim follows.

Now for 6>0 sufficiently small, if 0< IIF(a, .)-F(a*, ·)11 ~6 then

0< IID(a*, a - a*,· )11 = IIF(a, .) - F(a*, . )11 + o(IIF(a, .) - F(a*, . )11) ~ 26

and it follows that

{
IIF(a,·)-F(a*,·)11 'aEA O<IIF(a ·)-F(a* ')11~6}

sup II! - F(a, . )11 - II! - F(a*, . )11" , ,,,,

:>::: { II V - B v*(J)II I v* 0 < II II ~ 26} + u(6).
'" sup II! _ vii - II!II p E, V '"

Thus limb ~ 0 M v(f, 6) ~ limb ~ 0 M v*(J, 6).
For the reverse inequality, suppose p E V*, with 0 < II vii ~ D, for 6 small.

Without loss of generality we can assume that {FJ(a*, . ), ..., FN(a*, . )} is a
basis for W(a*), so p = D(a*, c, .) for some cERn, and we can take Ci = 0
for i> N. Now by standard arguments from the linear independence of
{FJ(a*), ..., FN(a*, .)} we have that for some L > 0, llell ~ L II vii. Thus, by
Lemma l(a), for 6> 0 sufficiently small,

IIF(a* + c, . ) - F(a*, . )11 = IID(a*, C, . ) + o(llcll )11 ~ II pll + o(L II vii) ~ 26.

So by arguments similar to those above, for D> 0 sufficiently small, we
have

{
IIV-Bv*(J)11 }

sup III _ vil-IIIII : VE V*, 0< Ilvll ~26

{
IIF(a, . ) - F(a*, . )11 . *}

~sup II! -F(a,' )II-II! -F(a*,. )11' aEA, 0 < IIF(a,· )-F(a " )11 ~ 26

+ u(26).

Therefore, limb ~ 0 M vCf, (j) ~ limb ~ 0 M v*(f, D). Since lie v*(J)11 ;6 0 and
E v*(J) = E v(f), we have by Theorem 3 Adv(f) = limb ~ 0 M vCr, 6) ~
limb ~O M v*(], 6) = max{ Ilqill: 0 ~ i ~ N}.

Remark. The strong unicity constant M v(f) and the local strong
unicity constant Adv(f) = limb ~ 0 M v(f, D), as noted earlier, are identical if
V is linear. If V is nonlinear then in general Adv(f) ;6 M v(f). This was
demonstrated for ordinary rational functions on a closed interval in [11].
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