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Let X be a compact metric space, and let ¥ = {F(a, x): ae A} where A is an open
subset of R”, and F(a, x) and ¢F/da,, 1 <i<n, are continuous on A x X. Suppose
feC(X) is weakly normal; that is (i) f has a best approximation F(a*, -)= By(f)
such that N =dim W(a*)=dim span{(0F/da,)(a*, -): 1 <i<n} is maximal, and (ii)
certain weakened versions of the local Haar condition, a sign property equivalent
to a form of asymptotic convexity, and Property Z hold. For those weakly normal
functions f for which {xe X:|f(x)— F(a*, x)|=|f— F(a*, -)|} has exactly N+1
points, we give constructions of the local Lipschitz and strong unicity constants, as
well as show that B (/) is differentiable. € 1989 Academic Press, Inc.

1. INTRODUCTION

In the setting of uniform approximation by algebraic polynomials in a
single real variable, characterizations for the strong unicity constant were
developed in [5, 18]. In [10, 1] a characterization for the local Lipschitz
constant was developed and it was shown that under certain conditions the
norm of the derivative of the best approximation operator equals the local
Lipschitz constant. It is the purpose of this paper to extend these results to
a much more general setting, which includes, e.g., as a special case, the
situation of generalized rational approximation on an arbitrary compact
metric space. In this section we describe our setting, which is similar to that
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in [15, 7]; in Section 2 we prove some preliminary results; in Section 3 we
review and expand some resuits for the linear case; and we prove our main
results in Section 4.

Let n be a positive integer, and let 4 be an open subset of R”. For any
a=(a;,..,a,)eR” |la} will denote max{la,|:1<i<n} Let X be a
compact metric space with a least n+ 1 points, and let #(x, y) denote
the distance between x, yeX. Given feC(X), we define /4=
sup{if(x)|: xe X}. For any positive integer ¥ and any Sc X, $, will
denote {(x, ..., X;): Xy, .., X, distinct points in S}. Let ¥ be a set of con-
tinuous functions defined on A4 x X, where for all Fe ¥V we also assume
(¢Fica)a.x)=F{a, x) is continuous on Ax X for i=1,.,n For any
ac A, set W(ay={D{a, b,x)=Y"_|b,Fla, x). b=(b,.,b,)eR"} and
let d{a)=dim W(a). Let N=max{d(a):aeA}; evidently N<n Given
feC(X) and a4, let Ef)={xeX:|f(x)—Fla, )| =|f—Fa, )| }
We say F(a*, -)e V is a best approximation to fe C(X) on X from ¥V if
| f— Fla*, Y| < |If — Fla, -)|, for all ae A. If F(a*, -} is unique, we wiil
often denote it by B,(f), and we will also use the notation e,{f}=
f—Bf)and E(f)=E,{f) The notation B,{f, S) will mean the unique
best approximation to f on S from V, where S< X.

DerFmvITION 1. Let fe C(X).

{(a) The global Lipschitz constant is defined as

|B,(f)—B,{g
If— gl

]
/1,/<f)=sup{ . rpg, geCn].

(by For 6>0, let

IBAN=BAE - gy <5, s i)
I/l

A S, 5)=Sup{

Then

FAN) = lim A f.9)

is the local Lipschitz constant.

{(c) The strong unicity constant is defined as

| Fla, -) — B (f)
If—Fla, )l = 1lf — BAS)]l

rae A; Fla, Y # B (f)}.

(SR

s
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(d) For >0, let

M(f,9)

u { |Fa,-)— BAS)I
PV =F@ )l —1f = B

:aeA;0<|IF(a,-)—BV(f)IIS(S}.

Then

My(f)=5lirgl+ M,(f, )

is the local strong unicity constant.

We remark here that in case ¥ is a linear subspace it was shown in [11]
that M ,(f, 6)= M (/) and so the local strong unicity constant only makes
sense when V is a nonlinear set. As stated earlier, it was demonstrated in
[10, 1] that under certain conditions the local Lipschitz constant turns out
to be the norm of the derivative of B,.. The following definition makes this
concept of derivative precise.

DEerFINITION 2. The best approximation operator B has at fe C(X) a
one-sided derivative denoted by D, B,: C(X)— V if for each ge C(X) the
limit

li By(f+1g)— By(f)
m

r—0t !

=DfBV(g)

exists. In case DB, (g)= —D,B,(—g), we say B, is differentiable at f If
in addition the derivative D, B, is a linear operator of direction g then B,
is called Gateaux differentiable at fe C(X).

The study of the differentiability of B,. in C(X) was begun by Kroo [13]
where a characterization of those fe C(X) where B, is Giteaux differen-
tiable is given when X is an interval and V is a linear space satisfying the
Haar condition. These results have subsequently been extended to the
setting where X is an interval and V is the set of ordinary rational functions
[12]. In this report, studies of the local Lipschitz constant for the
aforementioned general nonlinear families will lead to an extension of the
differentiability of B, to these families.

We next define three properties which will appear as hypotheses in many
of our results.

DEFINITION 3. Let ae A4 and Sc X.

(a) We say that property SIGN(qg, S) holds if for all S;< S, S, com-
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pact, for all be 4 with F(a, x)# F(b, x), for all xeS§,, there exists a
¢ € W(a) with sgn ¢(x) =sgn(F(b, x) — F(a, x}), for all xe S,.

(b) We say property LH(qa, S) holds if for every m <d(a) and every
set of distinct points {x,,..,x,}<S, the set of vectors {[A,(x,}, ...
hi(x;))]: j=1, .., m} is linearly independent, where &k = d(a) and {h,, ... i, }
is a basis for W(a).

(c) We say property Z(a, S) holds if there is a >0 such that fer
de A with |a—a| <6 and for all be A4, if F(b, -)— F{(a, -) has more than
d(a)— 1 zeros in S, then F(b,-)=F(a,-) on X.

We remark here that property SIGN(q, S) is equivalent to asymptotic
convexity essentially as defined in [15] restricted to subsets of S. Aiso
property SIGN(a, S) is similar to the definition of the “Vorzeichen-
bedingung” found in [7, p.68]. Properties LH(q, S} and Z(a, S) are,
respectively, essentially the local Haar condition and property Z as defined
in [3,7, 157 but restricted to S.

DerNITION 4. Let fe C(X). We say that f is weakly normal if f has a
best approximation F(a*, -) with d(a*)= N such that SIGN(a*, E_.{/}}.
LH(a*, E«(f)), and Z(a*, E,«(f)) all hold.

This weak normality condition is the same as the usual normality condi-
tion with the exception that we only require the three properties of Defini-
tion 2 to hold on the set of extreme points, E,.(f). We also point out that
this definition is motivated by the observation made in [15, p. 138] that
the local Haar condition could in some cases be weakened by requiring the
local Haar condition only on the set of extreme points.

Examples of the kinds of settings our results can be applied to are
generalized rational functions, sums of exponential functions with non-
coalescing frequencies on compact subsets of the real line, and of course
linear subspaces. Our results also can be applied to certain generalized
rational functions, which are not varisolvent as defined by Rice [16, 17].

2. PRELIMINARY RESULTS

We now state a lemma which collects some reslts on the set V' which wiil
be needed later.
LEMMA 1. Suppose a* € A is fixed with d(a*)= k. Then

(a) If lla—a*| is sufficiently small, then Fla, - )—Fa¥ )=
D(a*, a—a*. )+ o(lla—a*|).
(b) ||Fla,-)— Fla*, )| =0(la—a*||) as [a—a*| -G

640 58 2.4
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(c) Suppose k=N. Let x,, .., xy be distinct points in X such that
LH(a*, {x,, ..., xy}) and Z(a*, {x,, .., X }) hold. Let I be a set of N indices
such that {F{a*,-): iel} forms a basis for W(a*). Then for all sufficiently
small >0, there exists a 6=205{(g)>0 such that if |Fla*, x,)—c/)|<9,
i=1, .., N, then there is a unique a € A satisfying (i) F(a, x,)=c, i=1, .., N,
(il) a,=a¥* for i¢ I, and (iil) |a —a*| <e. Furthermore, Fla,-)eV is the
only element of V satisfying (i); that is, if also de A and F(a, x;)=c,,
i=1,.., N, then F(a, x)=F(a, x) for all xe X. We may also assume that
la—a*|| = O(| F(a, -) — F(a*, -)|) as |F(a, -)— F(a*, -)|| - 0.

Proof. The proof of (a) follows from the fact that F(a, x), i=1, .., n,
are continuous on 4 X X and (b) follows from (a). Part (c) and its proof
can be found in [3].

The first theorem we present contains results on best approximation, in
particular, a “zero in the convex hull” characterization of a best
approximation, an inclusion theorem, and a strong uniqueness result.
However, the main purpose of the theorem is to establish a type of
generalized alternation theorem in our setting.

THEOREM 1. Lef a* e A be fixed with d(a*)=k.

(a) Suppose feC(X) and F(a* -)eV are such that SIGN(a*,
E_«(f)) holds. Then F(a*, -) is a best approximation to f if and only if there
is no ¢ € Wia*) such thar (f(x)— F(a*, x)) ¢{x)>0 for all xe E_.(f).

(b) Under the hypotheses of part (a), F(a*, -) is a best approximation
to f if and only if the zero of k-dimensional real space, O, lies in
co{sgn(f(x)— F(a*, x))[hy(x), ... he(x)]: x€ E «(f)}, where co denotes the
convex hull and {h,, ..., h,} is any basis for W(a*).

(c) Suppose (xg, .., x;)€ X, is such that LH(a*, {xq, .., x;}) holds.
Then there is a unique set of signs o6, ..., 6, depending on a* and x,, ..., X,
such that o4,=1, l|o|=1 for i=1,.,k, and O, lies in
co{o;[h(x;); .. Me(x)]: i=0, .., k}, where {h, .., h.} is any basis for
W{(a*). Furthermore, o, ..., 6, are independent of the choice of basis for
Wi(a*).

(d) Suppose d(a*)=N, and (xq, .., xy)eXy is such that LH(a*
{Xg, . Xn}) holds. Then there is a >0 such that if ae A, (yg, ., yn)€ Xn
satisfy  |a—a*| <6, and r(x;, y;)<6, O<i<N, then d(a)=N,
LH(a, { yo, -, ¥n}) holds, and the signs associated with a* and x,, ..., x y are
ldenncal with those associated with a and v, ..., ¥ 5-

(e) Suppose (Xore Xz )€ X is such that LH(a*, {x,,..,X,}) and
SIGN(a*, {xq, .., X;}) hold. Then there is no ae A for which o (F(a, x;)—

Fla*, x; )) >0,i=0, ..,k or 6(F(a, x;,)— Fla*, x;))<0, i=1, .., k.
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(£} Suppose (xg,..,x,)e X, is such rhar LH(a*, (X0, s X }) and
SIGN(a*, {xg, .., xx}) hold. Suppose fe C(X), and let oy, ..., 0, be signs as
in part (c). Suppose further that sgn(f(x;) — F(a*, x,)}) =00, 0<i<k, for
some o=—1,0, or 1. Then nf{||f—Fla )|:acA}zmin{|f(x}—
Fla*, x)|: 0<i<k}.

(g) Suppose LH(a*, E{f)) and SIGN(a* E,.(f)) hold. Then
F{a*, -} is a best approximation to fe C(X) if and only if f— Fla*, -} pos-
sesses a “g-alternant” of length k + 1, that is, a (k + 1)-tuple (x,, .., x;)€ X,
with signs  o4,..,0, as in part (c) such that x,eE{f) and
sgn( f(x,) — F(a*, x;))=00,, i=0, .., k, for some 0= —1,0, or 1. We shail
denote this o-alternant by o ,(Xg, ... Xi;a*). For the converse part, ihe
assumptions that LH{a*, E_.(f)) and SIGN(a*, E,.(f)} hold can be
replaced by the weaker assumptions that LH(¢*, {x,, .., x, }) and SIGN(a*,
{Xgs s X1} ) hold.

(h) Suppose da*)=N, and feC(X) is such thar [— Fla*, -}
possesses a o-alternant ¢, {(xg, .., Xy;a*) of lemgth N+1  with
LH(a*, {x¢, ... Xy }), SIGN(a*, {xq, .., xx}), and Z{a*, {xq, .. xx}) ail
holding. Then the best approximation F(a*, -} is strongly unigue: thar is,
there is a v >0 such that

ILf = Fla, )il = | f— Fla*, )| +7 | Fla, -) - F(a*, -)|

Jor all ae A.

Proof. The proof of (a) follows as a result of property
SIGN(a*, E,.(f)) and arguments similar to those in [ 15, Theorem 87]
and [7, Satz 5.27. Part (b) results from part {a) and the theorem on linear
inequalities (4, p. 19]. Part (f) is the usual type of inclusion result or a
general de la Valleé Poussin theorem [4, p. 77] and is well known (see,
e.g., [15, Theorem 85]; its proof follows immediately from (e). The proof
of (h} follows by arguments similar to those in {3, 9], where part (e} above
is used in place of the usual zero counting on an interval. We will give
proofs of (c), (d), (e), and (g).

(c) Let {hy,.., h.} be any basis for W(a*), and consider the
equation

k
0,0,[hi(x;), ., Belx;) ] =0y (2.1)
i=0

i=

This is an underdetermined homogeneous linear system and so it has non-
trivial solutions. Now since LH{a*, {x,, .., x,}) holds every set of vectors
{ThUz) o Bil(21) ] oo [Hi(24), s Bi(24)]} is linearly independent, where
7y, .« Z; are distinct points in {xg, .., x,}. Thus for any nontrivial solution
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(8064, . B,0,) Of (2.1) we must 8,0,#0 for all i=0, 1, ..., k. Now without
loss of generality we may choose ¢,= 1, and rewrite (2.1) as

Y 6:(0:/00)[hy(x); s il x) T = — [h1(X0)s s HilX0) 1. (2.2)
i=0

The Haar condition then implies that (2.2) has a unique solution
(6,(0,/0y), ..., 6,(0,/05) = (21, ..., ), Where a;#0, i=1, .., k. Now impos-
ing the conditions |o,] =1, 6,>0, for i=0, .., k, and 3 %_, #,=1 determines
05 ., 0 and b, ..., 8, uniquely. To see that oy, .., o, are independent of
the choice of basis for W(a*), we observe for any % in any other basis
for W(a*) we must have Y*_,0,6,h(x;)=0 so (2.1) holds for the
Gos s Ok> B9, .y B, chosen above.

(d) Without loss of generality we may assume A= F,(a* -),
i=1,..,N, forms a basis for W(a*). Let A,=F/(a,-), i=1,.., N. Now,
h{ y;) depends continuously on a and y;, so for é >0 sufficiently small we
have that the determinant of the matrix [h(z;)], i=1,., N, j=1,., N, is
nonzero for every choice of N distinct points {z, ..., zy} from { yo, .., Yx}.
Thus {A,, .., Ay} is linearly independent, so d(a) > N; but N is maximal, so
d(a)=N, and {h, .., hy} is a basis for W(a). Also, W(a) satisfies the Haar
condition on { yy, ..., yn} s0 LH(a, { yg, ... ¥ }) holds. Finally, by part (c)
we can infer that «, .., o,y are continuous functions of x,, ..., x», a¥, so
small changes in x,, ..., x5, a* will leave the signs gy, ..., 6 associated with
Xg, .., Xn unchanged. Thus if é >0 is sufficiently small, o,, ..., 6, will also
be the signs associated with yq, ..., y ..

(e) Suppose o{Fla, x;)— F(a*, x;))>0 for i=0,..,k (The case
where a(F(a, x;)— F(a*, x;))<0 for i=0,..,k is similar and will be
omitted.) Let {A,, .., h,} be a basis for W(a*). By SIGN(a*, {xg, ..., X }),
there is a ce R* such that sgn(¥/_, ¢;i(x,)) =sgn(F(a, x,) — F(a*, x,)) for
i=0, 1, .., k. Thus, setting p=3Y"%_, ¢;h,, we have ¢, p(x,)>0for i=0, .., k.
We wish to show this is impossible; we will establish the stronger claim
that if ¢, p(x,) =0, for i=0, ..., k, then p=0 on X. From part (c) above and
its proof we have that %_, 0,0,[A(x,), .., he(x;)]1 =[O0, ..., 0], for some
0y, ... 0, with 6,>0 for all i So Y% _,0,6,p(x;)=0. But 6,0,p(x;,) =0,
0<i<k, hence p(x;)=0, 0<i<k, and the claim now follows from the
assumption that W(a*) satisfies the Haar condition on {x,, ..., x; }.

(g) (=) Suppose F(a*, -) is a best approximation to f from V. If
|.f — F(a*, -)| =0, then E,.(f)=X and for any (x,, .., x;) € X, with signs
Gy, ., 0 We have |f(x,)— F(a*, x;)|=0=00,, i=0,.., k. If | f— F(a*, )|
>0, then by part (b) above and Caratheodory’s theorem [4, p. 17], for
some m<k, there exist (xg,..,x.)eX, with [f(x,)—F(a* x,)|=
| f— F(a*,-)|l, i=0,..,m, and the zero of R* is in co{sgn(f(x; —
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Fla*, x))[h{x;), ., i(x)]: i=0, .., m} where {h,,.., h,} is a basis for
W(a*). But by the Haar condition, m>%, so m=4k. By the uniqueness
of the signs in part (c) we have sgn(f{(x,) — Fla* x,))sgn(f{x,}—
Fla*, x;))=0;, so sgn(f(x,)— F(a*, x;))=sgn(f(xo) — F(a*, x,))o, =00,
for i=0, ..,k

(<) Suppose that for some (xg, ... x;)€ Xy, LH(a*, {Xq, . )
and SIGN(a* {xg, .., x}) hold, |f(x;)— Fa*, x;}| =/~ F(a* -)|. and
sgn{ f{x;}— F(a*, x;))=a0,, for i=0, .., k, for some 0= —1,0, or i. Then
by part (f) we have

If — F(a*, )| Zinf{|| f — F(a, -)|:ae 4}
Zmin{|f(x;)— Fla* x}:0<i<k}

=|f—Fa, ),

so F(a*, -) is a best approximation to f from V.

Remark. We note that if o, {xg, .., x.;a*) is a o-alternant for
f—F(a* ), and if we define M,={x;:0,=1} and M,={x,:0,= —1},
then in the terminology of [6, 197 M = M, U M, is called an H-set relative
to F(e* -), since by Theorem l(¢), there is no Flg, -)eV with
Fla*,-)—F(a,-)>0 on M,, and F(a*,-)— F(a,-)<0 on M,. In fact, in
the terminology of [9], o,(xy, ..., X;; @*) is a2 minimal H-set relative to
Fla*, -).

As stated before Theorem 1(g) is a generalized alternation theorem, but
we note there that the ordinary alternation theorem does not necessarily
hold even in situations where it would appear to make sense. The following
exampie illustrates this.

ExampLE 1. Let X = {—1,0,%}, 4 =R% and V = {a, +a,x":
(a,,a,)eA}. For every ae A we have W(a)=V and d(a)=2. Since V' is a
linear space we have that property SIGN(q, X) holds for all ae 4. Note
also that LH(q, X) and Z(a, X) also hold for all a€ 4. Thus every f e C{X)
is normal. Define fe C(X) by f(—1)=0, f(0)=0, and f(})=—3 Con-
sider a=(—%,1), so Fla, x)=x>—1 We have then that || f— F(a, -)| = 3
with f — F(a, -) having the ordinary alternation property, but F{a, -) is not
a best approximation to f. To see this, consider a*=(—20), so
Fla*, x)= —3; we have |f—F(a* )| =35 with f(—1)—Fa* —1)=3
f(0)~ Fla*,0)=3% and f(})—F(a* 3)=—3 Now we have
(DL (=D’ T+ EMLL 02T+ ()= DL, (3)*1=10, 0], so (04, 01, 1)
=(1.1, —1), and so f— F(a,-) alternates in the sense described in
Theorem 1(g); thus F(a*, -) is the best approximation to f. Note that if we
extend this example to [—1, 1] by defining f to pass through (—1, 0}
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(=% —2), (0,0), (3, —2), and (1, —3), and to be linear between these
points, then f is weakly normal (but not normal), and F(a*, x) = — 3 is still
the best approximation to f according to Theorem 1(h) with the same
o-alternant. Thus although the concepts of weak normality and s-alternant
are the same as ordinary normality and alternant in some common situa-
tions (e.g., ordinary rationals or exponential sum approximation on a com-
pact subset of an interval with at least N+ 1 points), in more complicated

situations they can add additional insight.

The next example demonstrates that in contrast to the set of normal
functions the set of weakly normal functions need not be an open set. It
also gives an example of a nonweakly normal function that has a strongly
unique best approximation.

ExampLE 2. LetX=[—-1,1],4=R%and V= {a,+a,x*:(a,,a,)e 4}.
Then as before W(a)=V and d(a)=2, for all ae A4, but since properties
LH(a, X) and Z(a, X) both fail, there are no normal functions in C(X) with
respect to V. Now define fe C(X) by f(—1)=1, f(—3=—1, f(0)=1,
f(1)=0, and linear in between these points. Then a*=(0,0) gives
F(a*, x)=0 as the best approximation with {—1. —4, 0} with the signs
go=1, 6,=—1, 0,=1 forming a c-alternant. Note also that properties
SIGN, LH, and Z all hold at a* on {—1, —4,0}, so f is weakly normal
and by Theorem 1(h), F(a*,-)=0 is strongly unique. Now for 0 <<%
define g, e C(X) by g(—1)=1, g(=3)=—1, g(—1)=1, g(0)=1~1,
g,(ty=1, g,(1)=0, and linear in between these points. Then a* = (0, 0) still
gives the best approximation to g, and {—1, —3, —¢} with signs g4=1,
o,=—1, and o,=1 forms a c-alternant, but properties LH and Z fail to
hold at a* on the set E,.(g,)={—1, —3 —1,t}. So g, is not weakly
normal even though g, — f uniformly as t —» 0. However, we do have that
for ¢ sufficiently small

g —Fla, )| <llgll + (1 =42)(T—4%))| Fla,-)|  forall ae4.

Hence g, has zero as its strongly unique best approximation.

The preceding example illustrates an important fact about the weakly
normal functions. That is, if f is weakly normal and g is sufficiently close
to £, then g must have a strongly unique best approximation, even if g is
not weakly normal. This is made precise in the following lemma.

LemMA 2. Suppose fe C(X) is weakly normal and |le (f)|| #0. Then
there exists a 64> 0 such thar if ge C(X) and || f— g| <3d,, then g has a
strongly unigue best approximation F(a,-), and g— F(a,-) possesses a
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g-alternant of length N+ 1. In addition, A, (f, 84) < + x. Moreover, this
strong uniqueness holds uniformly in that there exist @ §,0<0<é,, and a
7>0 such that ||g—Fla, )| 2| g— B, (gl +7 | Fla, )~ B, {g)| for ali g
with | f— gl <0 and for all ae A.

Proof. 1f F{a*, ) is a best approximation to f, then LH(a*, E .(/}}
and SIGN{e*, E_.(f)) hold, so by Theorem 1{g) f— F{a¥, -) possesses a
g-alternant ¢,{xg, .., xy:a¥), and by Theoremi(h}, #(a*,-) is strongiy
unique. Then by arguments similar to those in [3], there exist 3, >0 and
>0 such that if ge C(X) and ||/ — g <&,, then a best approximation
Fa, -) to g exists, and for any such Fla, -} we have [F{a*, -} — F(a, )| <
B f—gll. We now claim that for some d, with 0 <d,<d, if |/ — g} <Jdq
and F(a, -} is a best approximation to g, then g— F(a,-) possesses a
g-alternant of length N + 1. Once this has been shown, strong uniqueness
of F{a, -) will follow from Theorem 1(h), and we will also have 4,{f. 5,} <
<+ =%.

To prove the claim, suppose that there were a sequence {g,,} = CiX)
with |lg,,—fI1 -0, and {a"}<cd4 with F{g”, -} a best approximation
to g,.. such that g,,,—F m -) possesses no c-alternant of length &+ 1
Note that |[F(a™, * <P Lf—g.l for m sufficiently large.
so |F{a", ~)—F(a*, -)H —+0. Thus by Lemma i{(c} we can assume
la” —a*| = 0. Without loss of generality, suppose {h;,.,f8y}=
{Fa* ), .., F\(a*, )} is a basis for W{a*}. Then by arguments in the
proof of Theorem 1(d), for m suffciently large we bave d(g"}=N and
s s By = {LF (@™, ), oy Fala™, <)} is & basis for W(a™). Now by
Theorem 1(b) and Carathedory's theorem [4, p. 177, for each m there is a
number & < N (which by going to subsequences if necessary, we can assume
to be fixed), numbers 8, ..., 0,, with 8,, >0, 0<i<k and 35 ,6,,= ..
and points ¥, - Vot € ol €,,) With

k
Z ni Sgn( gm( } Im) F(ams ~yml))[hlm( _"‘/n[ )a b4 h 'Vm{ ,"'mz ’] = Ok -

=6
Going to subsequences if necessary, we can assume y,,;— },€ X,
0 < i g k* Gmi e 6[ 2 07 0 g ’ S ka W'ith Z’;(=O 8[ = L and Sgn( gm(.)vmi) -

F(am’ y»m)) - 6-i for Oglgka Since H gm_F(am:- }!I - H/*‘F{G*. )I; ¢G we
have |6,] =1 for 0<i<k. We also have

i
Z whtvy1=0, (2.3

and 4 ¥gs .., ) © E(f) since for 0 <i<k we have
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|f(y:)— Fla*, y))l
Z gl yod) = F(@™, y ) = 1S () = S = 1 (Vi) — 8o Y|
— |F(a@", ymi) — Fla*, y)| — |F(a¥, y) — Fla¥, y,)|
2 gm—F@™, N =1y = (Yl = | f — &mll
— | F(a™, -)— F(a*, -)| — |F(a*, y,.) — Fla*, y))|
= || f~ Fla*, )]

asm — +oo. Nowif y,= y forsomei# j, then y,= y;= xforsome x € E .(f).
Thus 6, = lim,, _, o SO, (Y} — Fa™, yy;)) = sgn(f(x) — Fla*, x)) =
lim,, . . sgn(g,.(¥ay) — F@", ym)) = 6;. So 8,6,[h(y), .. An(3)] +
0;6;Lh (), o Aa(¥:)1=(0,+0,) 6, [h(y,), - hn(p:)], and 0,+6,>0 if
either 6,>0 or §,> 0. Now coalescing terms in (2.3) as above and deleting
any zero terms, we have that a nonempty set of vectors of the form
[A(x;), ..., An(x;)] 1s linearly dependent, where the x’s are distinct element
of £ .(f). But our weak normality assumption implies W(a*) satisfies the
Haar condition on FE,.(f); thus there must be at least N+ 1 of these
vectors. Thus we must have k=N, 6,>0, 0<i<N, and y,# y; for 0K/,
J<N, i#j. By Theorem 1(c), o,( ¥, .., ¥n; a*) exists with associated signs
Gg, - O and by Theorem 1(d), for m sufficiently large o\ ¥,.0» s Viun: @)
exists and has signs g, ..,0,. Also we have 0yeco{sgn(g,(y,.)—
F(@", ¥ )i Y oi)s oo By Y} 10 i=0, ..., N}. Thus, for m sufficiently
large, the uniqueness in Theorem 1(c) gives sgn(g,.(,..)— F(a™, y,.;)) =
o”6; for 0 < i< N, where ¢ = sgn{g,{ymo) —F@™, y,0)). Thus
G Vmor »» Vmws ™) 18 @ o-alternant for g, — F(a™, -), and this is a con-
tradiction. Thus, the claim is established.

To prove the strong unicity part we assume that F(q,-)=B,(g).
Suppose the result is false. Then there is a sequence {g,,} = C(X) with
lgwm—fI =0, Bg,)=Fa" ), and there is a sequence {"} < 4 with

18m—F(O", )| — | g — Fla™, )
1E(b™, ) — Fa™, -l

Yo -0 as m-— +o.

Since y,, -0 we must have that {||F(»™, -)||} is bounded and |g,, —
FO™, ) — 1 gn—Fla™, )| > 0. Now | g,,—F(a”, )| = | f— F(a*, )|, so
| &m— F(B™, )l = lf — F{a*, -)]. So, using Lemma 1(c) and the arguments
in [3, Theorem 2] we can assume [a™—a*|—0 and [b"—a*| —0.
We can also assume by using the arguments in Theorem 1(d) that
{Fi(a*,.), .., Fy(a*,-)} is a basis for W(a*), {F\(a™, "), .., Fx(a™ -)} is a
basis for W(a™), and {F,(b",-), .., F\(b™, )} is a basis for W(b™); also
ai’=b7"=a} for j>N. Now by the first part, we have that for all m
sufficiently large there is a s-alternant o (x4, ..., X,v; @) for h,, —F(a™, -);
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going to subsequences if necessary, we can assume x,, —x,;€ X, 0<i< N,
and from arguments of the first part of this proof, it follows that
{xg, ., Xy} will be the points of a o-alternant for f— Fa* -). By
Theorem 1(d), for m sufficiently large we can assume that o,{x,,. ..,
Xan.a™) and o ,(xg, .., Xy; a*) have the same signs o, ..., 0. Further let
o be such that sgn(f(x;)— F(a* x;))=o00,, for 0<i<N. Then for m
sufficiently large we have sgn(g,.(x,.)— F(a™, x,,;)) = oo, for 0<i<N. Wz

now claim that there is an o >0 such that for all m sufficiently large,

F m! 3 m
max {O_O_ (a ° Yﬂll) (b "1!) : 0

N

SN,z

la™— 6™

My

To prove the claim, suppose that, going to subsequences if necessary which
we do not relabel, there were positive numbers «,, — 0 with

F(ama xml) F(bmo
max ag; H e ||
|

Xoni) 0<:<rvf<oe

for all large m. Now for m sufficiently large, the mean value theorem
implies that F(a™, x,,;)— F(b™, x,.;,) = D(a*, a™, x;)+ of||la™ — b™||). Thus
we have that

max{ [t oAl )
[ =57 b7

]:0<i<N}<am_

Gomg to subsequences if necessary, we can assume (a;’ — b7 )/([a™ — 5" [}

. 0<j< N, where max{|c,[:0<j<N}=1. Thus defining ¢;=0 for
j> N we have max{oo; D(a*, ¢, x;}: 0<i< N} <0. But by the claim in the
proof of Theorem 1{e), we have D(a¥, ¢, -)=0, which is a contradiction.
Thus the claim is established. Again, going to subsequences of necessary,
we now have for m sufficiently large and for some / with 0 <i<N,

H Em— F(bm9 ) )” Zaai(gm(xmi) _F(bma xmi))

=00; (gm( f?ll) F(am’ xrm')}
F(am’ xmi) _F(bm’ xmi) ;

ilg™ — hm
”am —hm “ ‘la “

Z g, —Fla™, )| +a fla™ — b7

+o0;

So using Lemma 1(b), there is a constant L > 0 such that
I g — (67, W =1 gm— Fla™, )| + 2L [F(D7, -) — F(a”, -}].

Thus y,, = oL, which contradicts the fact that y,, —G.
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3. LiNEAR THEORY

We now consider the situation where ¥ is a linear subspace. We take
A=R" h, h,,.,hyeC(X) to be linearly independent and set V*=
{F(a,-)=a;h,+ --- +ayhy}. We have that for all aeR" and all Sc X,
dla)= N, W(a)=V*, and SIGN(q, S) holds; further LH(q, S) and Z(a, S),
when they hold, are independent of a, and are equivalent if |S| = N. Thus
f e C(X) will be weakly normal if and only if it has a best approximation
p*eV* with V* satisfying the Haar condition on E,.(f). If V* does
satisfy the Haar condition on (X, ..., Xy) € Xy, then 6 ,«(xq, ..., X @) exists
and is independent of @, and will be denoted by o ,«(x,, ..., X y).

Given X .= (Xg, .., Xy) € Xy with V* satisfying the Haar condition on
{x¢s - Xy} and o ,«(x,, .., xy) having signs a,,.., oy, we define the
generalized polynomials g€ V'* by

gix) =0,  j#i,j=0,..N,i=0, .., N. (3.1)

The proofs of the following two lemmas are similar to the proofs given in
['l, Lemma 1] and so will be omitted.

LEMMA 3. Suppose fe C(X) and Xy« = (Xg, ..., Xn) € Xy with V* satisfy-
ing the Haar condition on {xg,..,xy}. Let 6,(xq, ., xy) have signs
Gg, - Oy and define q; for i=0, ..., N as in (3.1). Then

) " —0; f(x;)
Byl f, Xya)= ), —F—"g,
(i) (f. Xvs) 1;0 1+ 1g,(x))| K

PR & —o,p(x;)
(il) ifpeV*, then p=)Y —L—1—g4.
,-go L+ |gx;)| &

LemMAa 4. Suppose V* satisfies the Haar condition on X yx= {X¢, ., Xy},
where (Xg, ..., xy) € X . Then the generalized polynomials q; defined by (3.1)
satisfy

Lo 1
i X

—_ =1
j=0 L+ !q]'(x,'”

N q;
(i1) — =0
,Z:o L +1g,(x)l

_ The next theorem gives an explicit form for the local Lipschitz constant,
A+(f), and as a consequence, shows that B, is Giteaux differentiable at
f, for all fe C(X) that are weakly normal, and such that |E,.(f)| =N+ 1.
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THEOREM 2. Suppose feC(X) is weakiy normal. e {f) #0 and
[E (N =N+1 Let E, ol f)={x¢, ., Xn}. Then

N

gl } =& .
e —— = 3 X, E!/’k .
L Trq | =2 (/)

j=0

il'*(f): (!i_r}}) Ay f, 0) =

Proof. The proof that 4,.(f)< @ ,+(X, E,.(f)) is similar to that in [1,
Theorem 2] and will be omitted, except to note that Markoif’s inequality
in that proof is replaced by the following fact: There is a function
y:RT ->R* with Yy(5)—>0 as 6 >0% with w(p, §)<| p| ¥id), for all
pe V* where w(p,d) is the modulus of continuity of p. To see this we
note S={ge V*: ||g| =1} is compact, and is thus equicontinuous by the
Arzela—Ascoli theorem; thus ¥(d)=sup{|g(x,)—q(x.)|: g€ S, x;. x,€ X,
X, —x,] <8} >0 as 6>0". Now for any peV* p £0, we have
w(p/lipl, 0)<Y(8), so o(p,8)<|pl¥(d). The proof that i,.(f)>
@ (X, E(f)) can be accomplished by selecting ge C(X) with |1 g} # 0
and proving. using the inequalities developed in the first part of the proof
with g=f+¢g, that lim, (B «(f+1g)—B,-(f))/r exists and equals
> {—a;8(x,)/(1+1q,(x,)))g;; this can then be used to show that

i d

Iz | Y B
N2 Ta

i=0 I+ ICJJ(-Y,,-)I

|
|
4;!
|

for all ge C(X) with || g| #0, and this implies Z,+{f)> & (X, E;-{f}).

The proof of Theorem 2 gives us then the following which is merely a
generalization of [137].

COROLLARY. Suppose [cC(X) is weakly normal, |e; ()| #0, and
|E o f =N+ 1. Let Epu(f)={xg, - Xx}. Then B, is Gateaux differen-
tiable at f for all ge C(X). Moreover,

N ~G-g(x')
DB, .(g)= — L2 g
Bi-(8 ,go 1+ I(?;'(X;'H Y

Remark. The number @ ,.(X, E «(f)) depends not explicitly on f but
only on the set of extreme points of /' — B,.(f). Thus if we change / but
maintain the same set of extreme points the number @ (X, E .{/)) will be
the same.

The final theorem of this section gives a characterization of the
strong unicity constant for fe C(X) when f is weakly normal and
IE. (/) =N+ 1. We omit the proof since it follows from the arguments of
[S, Theorem 57 and the fact that |E .(f})| =N+ 1. (See also [117].}
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THEOREM 3. Suppose feC(X) is weakly normal, |e, .(f)|#0, and
|Evo(f)|=N+1. Let E o(f)={x¢, .., Xn}. Then

Jim My.(f, 0) =My (f) =max{|¢;]:0<i< N}

4. MAIN RESULTS

We are now in a position to prove our main results which extend
Theorem 2, its corollary, and Theorem 3 to the nonlinear setting; the
results turn out to be the same as in the linear case, with V* = W(a*).

THEOREM 4. Suppose f e C(X) is weakly normal with best approximation
F(a*,-)eV, le )| #0, and [E/(f)I=N+1. Let E(f)=/{xg, . Xn}
and V* = W(a*). Then

1) = lim 3y(f; 8)= @ y(X, B, (f))

N

|q/'|
jgo L+ |qj(xj)|
where q;, j=0, .., N, are the generalized polynomials in W(a*) satisfying
(3.1).

Proof. Let §, be as in Lemma 2, and let §=4,(f, d,) < co. Now sup-
pose 0 < d < 6,; for & sufficiently small and 0 < || f— g|| < we have from
Lemma 2 that g has a strongly unique best approximation F(a, -), with
g—F(a, -) having a g-alternant o,.(yg, .., yx; a). Now using arguments
like those in the proof of the first part of Lemma 2 or by a generalization
of [1, Lemma 4] we can assume that max{r(x;, y;): 0<i< N} is as small
as we please. We have ||F(a, -)— F(a*, )| <P |f— gl so by Lemma I(c)
we can assume that |a—a*||=O(||F(a,-)— F(a* -)|)=0(|f—g|). By
our definitions and Theorem 1(d) we can assume that o ,(x,, ..., x; a¥),
Ty Yoy v Yus @)y Ope(Xgs oo Xy), and oo yg, .., ¥y) all have the same
signs &g, ..., 0. Now from Lemma 1(a) we have

IF(a, -)— Fla*, -) = D(a*, a—a*,-)| =o(lla—a*)=o(f—gll). (4.1)

Let f=f— F(a* -) and g= g— F(a*, -); we now claim that |B,.(g)—
By«(f)— D(a*, a—a*,-)| =o(| f — g|l). Once this has been shown, apply-
ing (4.1) we will have

1E(a, -) — F(a*, )| = |By+(£) — By«(f)]
< Fla, ) — Fla*, <) = (Byo(£) = Byu( )]
<|F(a, -)— F(a*, -)— D(a*, a—a*,-)|
+11By(8)— By«(f)— D(a*, a—a*,- )| = o(| f — gl|).

>
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Now ||/ —gll =/~ £] and we have
|Fla, -)— Fla*, )| < I|By+(f)— By+(2)l
If — gl h 17— &l

where 7,(t) -0 as 1 —»0". Thus we have for ¢ > 0 sufficiently smali, since
for any g with O < | f— gl <4 there is a g with 0 < ||/ — g]| <4,

+r(Lf— gl

[ #(a, -) — Fla*, )|, B }
{ 1zl 0<|f—gl<o

[By(8)—By(DI o A s
< — — g0 —gl<d;.
<SUP{ T +rlf=gl:0<i/f gl <0}

S0 Au(f,0) S Ap(f.0) + sup{r(|f—gll): 0 < f— gl <d}. Therefore,
limg o Au(fs 0)<limg_ g A,+(f, 8). Similar argumenis prove the reverse
inequality, and so we have lim;_ oA (f, 6)=1lim,;_¢A,.(f, d). But by
Theorem 1(g) we have B,.(f)=0 and E,.(f)=E,(f), so Theorem 2
implies that lims o Ap«(f, )= «(X, EAf))=lim;_ ¢ A,(f, 5)=A,(f)
There remains only to prove the claim. First note that (4.1) implies

1§ — D(a*, a—a* )l <llg—Fla. )l +olllf— gl (4.2)
Now for i=0, .., N,
18(y) — Dla* a—a*, y;)|
= |g(y)—Fla, y)l —IIFla, )~ Fla*, -} — D(a*, a — a*,-)|
=|lg—Fa, )l —ollf—gl) (4.3}

Since sgn( g( v;)— D(a*, a—a*, y,)}=sgn(g(y;)— Fla, y;)) =00, for some
c=+1,0<i<N, and D(a* a-—a* -)eV* we have form (4.3) and
Theorem 1(f)

18— By(2) >l g— Fla,- )l —olllf — gl (4.4)

Now applying the strong unicity part of Lemma 2 to ¥* there isa y>0
such that

IB,+(§)— D(a* a—a* )| <(I/p)[g§—Dla*, a—a* )| — 11— By(2)]1
Then {4.2) and (4.4) imply
IBy+(g)— D(a* a—a*.-)|
<(Up)lig—Fla, Il +ollf — gl)— (g — Fa, ) —ollLf — gIN]
=o(llf — &l

which establishes the claim and the theorem.
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The following corollary generalizes a result of [12] where it is shown
that in the case of ordinary rational function approximation on a closed
interval where f is normal with |E, (f)|=N+1, the B, is Géteaux
differentiable at f. (See also [2].)

COROLLARY. Suppose that feC(X) is weakly normal with best
approximation F(a*,-)eV, lle A(f W #0, and |E (f)|=N+1. Let E,(f)=
{X0s o Xn}» V¥=Wl(a*), and 0 ,(x,, ..., Xy; a*) have signs o, ..., 0. Then
B, is Gateaux differentiable ar f for all ge C(X). Moreover,

v —0,8(x)
DB =y 1= (4.5)
BAD= L TH g )1 @
where q;, 0 j< N, are the generalized polynomials in Wi(a*) satisfying
(3.1). Thus | DBy || =B «(X, E,(f))

Proof. Let geC(X). If g=0 then (4.5) holds, so assume g # 0. For
any nonzero t, let g, = f +tg, f=f— F(a*, -), and g,= g,— F(a*, -). In the
proof of Theorem 4, it was shown that (with g, replacing g)

1B g:)—BSf)— (By=(&,) = B/ NI =0l f — g).
This then implies

HBV(f+tg)—BV(f)_BV*(f+tg)—Bw(f)H _olt]el)
t t 1

which approaches zero as t — 0. As in Theorem 4 we have E,.(f)= E (f)
but by the corollary to Theorem 2, we have

lim Bv’*(f-+ tg)_BV*(f)= % _O'jg(xj) 4
j=0 1+ Iqj(xj)l

]

t—>0 {
so (4.5) follows.

The final theorem was proved in [11] for the situation of ordinary
rational function approximation on a closed interval with normality in
place of weak normality. We note also that a similar theorem has been
shown to hold under somewhat different assumptions [8].

THEOREM 5. Suppose f e C(X) is weakly normal with best approximation
Fa*,-)eV, le ) #0, and |E(f)|=N+1. Let E,(f)={x¢, ..., X},
and V* = W(a*). Then

lim M (f, 8)=M(f)=max{|q,]|:0<i< N},

where q;, OIS N, are the generalized polynomials in W(a*) satisfving
(3.1).
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Proof. For 6 >0, consider F(a,-)eV with 0< ||Fla,-)— F(a*, )| <.
Then from Lemma I(d), for §>0 sufficiently small we can assume
la—a*|=0(|Fa,-)— Fa*, -)|). Let f=f— F(a* +}); as in the proof of
Theorem 4, we have B, (f)_ and E,.(f)=E{f). Now by Lemma 1(a}
Fla,-) — Fla*, -) = D(a*,a—a*,-) + O(Ha—a*H) = Di{a*, a—a*,-} +
o(l|Fla, -)— Fla*,-)|}), so for 0>0 sufficiently small we have
Dia*,a—a*,-} #£0, so |f—D(a*,a—a* )j—|fll>0 We now claim
that for J > O sufficiently small

| Fla, -) — Fla*, )II _ |1D(a*, a—a*-)—By(f)l l

I.f = Fla, )| = f~ Fla*, )| 1f—Dla* a—a*-)j—|f—Bp(/)l]
<u(d),

where #(0)—0 as § >07. To see this, let y,(a )—HF(a,-)—F(a*, I =

D(a* a—a*,-)ll; then [¢,(a)l <[F(a, )—F(ﬂ —D(a*, a—a* )| =

o([Fla, -)— Fla*,-)|). So sup{ly,(a)l/|F(a, - ( sl O<iF(a, -~

F(a* )| <8} -0 & ->0% Likewise, let Yala) = |f — Fla, )| —
I f — Fla*, -}II —(|f = D(a*, a—a*,-)|—|IfI); then |y,(a) <|Fla*. -)—
Fla,-)+ Dia*, a—a*,-)| =o(| F(a, -)— F(a*, -)|). So sup{ [y (a)l/|F(a, )
— Fla*, )|: 0<||F(a, -)— F(a*, -)| <} -0 as 6 - 0". We have then that

IFlo, ) —Fla* )l _____ID(ata—a%) B/l __|
If = Fla, )= 1f —Fa* )l 17— D(a* a—a* )17~ Byl

| D@hamat i@ Dt a—at )l |
(I7=D(a* a—a* )=/l +¥xla) 17— Dla%a—a* )~ 71|

_ l v .(@)(If — Dia*, a—a*, )| — /1) = ¥a(a) D(a* a—a*,-)| )
(If = Fla, ) = I/ = Fla*, )] = Dla* a—a* = 171)

__IF@ ) Fa*, )
7= Fa, ) =1/ = Fa* ]

(4o 1D a=a* N/ -
(vt0)—ate) o ) [(1Fta. )= Fla®, 1)

(4;6)

X

Now by the strong uniqueness of F(a*,-), there is a p, >0 such thai
|f = Fla, )| = if — Fla*, )| >, F(a, -) ~ Fa*, )|, and by the strong
uniqueness of B,.(f), there is a y,>0 such that | f— D{a*, a—c*,- )| —
I £l 2','2I|D(a*, a—a*,-)|. So we have from (4.6),

| Fla, ) — Fa*, -l B | D(a*, a—a*,-) = By /)]
Hf—Fa ll_”f Fla*, )| If =D(a* a—a*- )| = f— Bu(N)ll]

< (1/7’1)[|¢1(G)I/IIF(0, -)— Fla*, )l +¥a(a)l/(y2 | Fla, -} = Fla*, )1,
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so setting
u(6) = sup{(1/y,)[1¥(a)l/ | F(a, -)
— F(a*, )| + [¥o(a)l /(y2 | F(a, ) — F(a*, -))]:
0<|F(a,-)—Fla*,-)| <6},
the claim follows.

Now for é > 0 sufficiently small, if 0 < ||F(a, -)— F(a*, -)|| <0 then

0< |D(a*, a—a*,-)| =|Fla,-)— Fla* )| +o(|Fla, -) — F(a*, -)[) <20
and it follows that

Sup{ | £(a, -) — Fa*, -)I

If—Fla, ) = Ilf — Fla*, )l
—B.(f
<sup { Ip— By
I/ =pl =111
Thus lim;_ o M ,(f, 8) 2 1lim,_ o M (1, 6).

For the reverse inequality, suppose pe V*, with 0 < | p|| <4, for é small.
Without loss of generality we can assume that {F (a*,-), .., Fy(a* -)} is a
basis for W{a*), so p=D(a*, ¢, -) for some ceR", and we can take ¢;=0
for i>N. Now by standard arguments from the linear independence of

{F\(a*), .., Fy(a*, -)} we have that for some L>0, |c| <L |p|. Thus, by
Lemma 1(a), for 6 > 0 sufficiently small,

[F(a* + ¢, -)— Fla*, - )| = 1D(a*, ¢, ) + ol <l pll + o(L || pll) < 20.

tac A, 0<||Fla, -)— F(a*, )| <5}

lpeV*, 0<|pl <25}+u(5).

So by arguments similar to those above, for é >0 sufficiently small, we
have
Ip =By
sup{———————:peV* 0< || p| <26
P {Hf— Pl=I71 g
| F{a, -) — Fla*, -]
If— Fla, )| = IL.f — Fla*, )|l

+ u(20).

ssup{ :aeA,0<||F(a,->—F(a*,-)n<25}

Therefore, lim,; o M,(f, ) <lim;_o My.(f,8). Since le,+(f)|#0 and
Ey(f)=Eu(f), we have by Theorem3 M (f)=1lim;_ oM (f,d)<
lim; o My.(f, 8)=max{[lg,[:0<i< N}

Remark. The strong unicity constant M ,(f) and the local strong
unicity constant M ,(f)=1lim;_ , M ,(f, 8), as noted earlier, are identical if
V is linear. If ¥V is nonlinear then in general M ,(f)# M ,(f). This was
demonstrated for ordinary rational functions on a closed interval in [117].
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